博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
[DLX精确覆盖+打表] hdu 2518 Dominoes
阅读量:5326 次
发布时间:2019-06-14

本文共 7072 字,大约阅读时间需要 23 分钟。

题意:

就是给12种图形,旋转,翻折。有多少种方法构成n*m=60的矩形

思路:

裸的精确覆盖。就是建图麻烦

个人太挫,直接手写每一个图形的各种形态

须要注意的是最后的答案须要除以4

代码:

#include"stdio.h"#include"algorithm"#include"string.h"#include"iostream"#include"queue"#include"map"#include"vector"#include"string"using namespace std;/*int mp[63][5][5]={    {        //1.1        {1,0,0},        {1,0,0},        {1,1,1},    },    {        //1.2        {1,1,1},        {0,0,1},        {0,0,1},    },    {        //1.3        {0,0,1},        {0,0,1},        {1,1,1},    },    {        //1.4        {1,1,1},        {1,0,0},        {1,0,0},    },    {        //2.5        {1,1,1,1,1},    },    {        //2.6        {1},        {1},        {1},        {1},        {1},    },    {        //3.7        {0,1,0},        {1,1,1},        {0,1,0},    },    {        //4.8        {1,1,1},        {1,0,1},    },    {        //4.9        {1,0,1},        {1,1,1},    },    {        //4.10        {1,1},        {1,0},        {1,1},    },    {        //4.11        {1,1},        {0,1},        {1,1},    },    {        //5.12        {1,1,1,1},        {1,0,0,0},    },    {        //5.13        {1,0},        {1,0},        {1,0},        {1,1},    },    {        //5.14        {0,0,0,1},        {1,1,1,1},    },    {        //5.15        {1,1},        {0,1},        {0,1},        {0,1},    },    {        //5.16        {1,0,0,0},        {1,1,1,1},    },    {        //5.17        {0,1},        {0,1},        {0,1},        {1,1},    },    {        //5.18        {1,1,1,1},        {0,0,0,1},    },    {        //5.19        {1,1},        {1,0},        {1,0},        {1,0},    },    {        //6.20        {1,0,0},        {1,1,0},        {0,1,1},    },    {        //6.21        {0,0,1},        {0,1,1},        {1,1,0},    },    {        //6.22        {1,1,0},        {0,1,1},        {0,0,1},    },    {        //6.23        {0,1,1},        {1,1,0},        {1,0,0},    },    {        //7.24        {1,1,1,1},        {0,1,0,0},    },    {        //7.25        {1,0},        {1,0},        {1,1},        {1,0},    },    {        //7.26        {0,0,1,0},        {1,1,1,1},    },    {        //7.27        {0,1},        {1,1},        {0,1},        {0,1},    },    {        //7.28        {0,1,0,0},        {1,1,1,1},    },    {        //7.29        {0,1},        {0,1},        {1,1},        {0,1},    },    {        //7.30        {1,1,1,1},        {0,0,1,0},    },    {        //7.31        {1,0},        {1,1},        {1,0},        {1,0},    },    {        //8.32        {0,0,1},        {1,1,1},        {1,0,0},    },    {        //8.33        {1,1,0},        {0,1,0},        {0,1,1},    },    {        //8.34        {1,0,0},        {1,1,1},        {0,0,1},    },    {        //8.35        {0,1,1},        {0,1,0},        {1,1,0},    },    {        //9.36        {0,1,0},        {0,1,1},        {1,1,0},    },    {        //9.37        {0,1,0},        {1,1,1},        {0,0,1},    },    {        //9.38        {0,1,1},        {1,1,0},        {0,1,0},    },    {        //9.39        {1,0,0},        {1,1,1},        {0,1,0},    },    {        //9.40        {1,1,0},        {0,1,1},        {0,1,0},    },    {        //9.41        {0,1,0},        {1,1,1},        {1,0,0},    },    {        //9.42        {0,1,0},        {1,1,0},        {0,1,1},    },    {        //9.43        {0,0,1},        {1,1,1},        {0,1,0},    },    {        //10.44        {0,1,0},        {0,1,0},        {1,1,1},    },    {        //10.45        {1,1,1},        {0,1,0},        {0,1,0},    },    {        //10.46        {0,0,1},        {1,1,1},        {0,0,1},    },    {        //10.47        {1,0,0},        {1,1,1},        {1,0,0},    },    {        //11.48        {0,1,1},        {1,1,1},    },    {        //11.49        {1,1},        {1,1},        {0,1},    },    {        //11.50        {1,1,1},        {1,1,0},    },    {        //11.51        {1,0},        {1,1},        {1,1},    },    {        //11.52        {1,1,1},        {0,1,1},    },    {        //11.53        {1,1},        {1,1},        {1,0},    },    {        //11.54        {1,1,0},        {1,1,1},    },    {        //11.55        {0,1},        {1,1},        {1,1},    },    {        //12.56        {0,1,1,1},        {1,1,0,0},    },    {        //12.57        {1,0},        {1,0},        {1,1},        {0,1},    },    {        //12.58        {0,0,1,1},        {1,1,1,0},    },    {        //12.59        {1,0},        {1,1},        {0,1},        {0,1},    },    {        //12.60        {1,1,1,0},        {0,0,1,1},    },    {        //12.61        {0,1},        {1,1},        {1,0},        {1,0},    },    {        //12.62        {1,1,0,0},        {0,1,1,1},    },    {        //12.63        {0,1},        {0,1},        {1,1},        {1,0},    },};//a代表每一个的行,b代表每一个的列。c代表每一个属于哪种int a[]= {3,3,3,3,1,5,3,2,2,3,3,2,4,2,4,2,4,2,4,3,3,3,3,2,4,2,4,2,4,2,4,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,2,3,2,3,2,3,2,3,2,4,2,4,2,4,2,4};int b[]= {3,3,3,3,5,1,3,3,3,2,2,4,2,4,2,4,2,4,2,3,3,3,3,4,2,4,2,4,2,4,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,2,3,2,3,2,3,2,4,2,4,2,4,2,4,2};int c[]= {1,1,1,1,2,2,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12};#define N 63*66*(60+66+14)#define M 63*66int ooo,haha;struct DLX{    int n,m,C;    int U[N],D[N],L[N],R[N],Row[N],Col[N];    int H[M],S[M],cnt,ans[M];    void init(int _n,int _m)    {        n=_n;        m=_m;        for(int i=0; i<=m; i++)        {            U[i]=D[i]=i;            L[i]=(i==0?m:i-1);            R[i]=(i==m?

0:i+1); S[i]=0; } C=m; for(int i=1; i<=n; i++) H[i]=-1; } void link(int x,int y) { C++; Row[C]=x; Col[C]=y; S[y]++; U[C]=U[y]; D[C]=y; D[U[y]]=C; U[y]=C; if(H[x]==-1) H[x]=L[C]=R[C]=C; else { L[C]=L[H[x]]; R[C]=H[x]; R[L[H[x]]]=C; L[H[x]]=C; } } void del(int x) { R[L[x]]=R[x]; L[R[x]]=L[x]; for(int i=D[x]; i!=x; i=D[i]) { for(int j=R[i]; j!=i; j=R[j]) { U[D[j]]=U[j]; D[U[j]]=D[j]; S[Col[j]]--; } } } void rec(int x) { for(int i=U[x]; i!=x; i=U[i]) { for(int j=L[i]; j!=i; j=L[j]) { U[D[j]]=j; D[U[j]]=j; S[Col[j]]++; } } R[L[x]]=x; L[R[x]]=x; } void dance(int x) { if(R[0]==0 || R[0]>ooo) { haha++; //cnt=x; return ; } int now=R[0]; for(int i=R[0]; i!=0 && i<=ooo; i=R[i]) { if(S[i]<S[now]) now=i; } del(now); for(int i=D[now]; i!=now; i=D[i]) { //ans[x]=Row[i]; for(int j=R[i]; j!=i; j=R[j]) del(Col[j]); dance(x+1); for(int j=L[i]; j!=i; j=L[j]) rec(Col[j]); } rec(now); return ; } } dlx; int main() { int n,m; while(scanf("%d%d",&n,&m)!=-1) { int cnt=0; ooo=60; dlx.init(63*60*5,60+12); for(int i=0; i<63; i++) { for(int xx=1; xx+a[i]<=n+1; xx++) { for(int yy=1; yy+b[i]<=m+1; yy++) { cnt++; // if(c[i]<5) printf("%d:",c[i]); for(int x=0; x<a[i]; x++) { for(int y=0; y<b[i]; y++) { if(mp[i][x][y]==1) { int tep=(xx+x-1)*m+(yy+y); // if(c[i]<5)printf("%d ",tep); dlx.link(cnt,tep); } } } //if(c[i]<5) puts(""); dlx.link(cnt,60+c[i]); } } } haha=0; dlx.dance(0); printf("%d\n",haha); } return 0; }*/ int ans[]={0,0,0,2,368,1010,2339}; int main() { int n,m; while(scanf("%d%d",&n,&m)!=-1) { if(n>m) swap(n,m); printf("%d\n",ans[n]); } return 0; }

转载于:https://www.cnblogs.com/yfceshi/p/7029180.html

你可能感兴趣的文章
【python 类】【部分转发】设计模式 -- 责任链模式 (类之间的联动)
查看>>
[Swift]Array(数组)扩展
查看>>
Jtable 表格按多列排序(支持中文汉字排序)
查看>>
本地idea运行spark,A master URL must be set in your configuration
查看>>
python中的下划线
查看>>
Linux连接Internet
查看>>
[TypeScript] Create a fluent API using TypeScript classes
查看>>
Java异步多线程编程探索之CompletableFuture
查看>>
C# 面向对象初级 (参考传智播客视频)
查看>>
阳光下的挣扎
查看>>
C++11模板友元语法
查看>>
sql 备份 语句(全)
查看>>
Zabbix 微信报警Python版(带监控项波动图片)
查看>>
WEBFORM--第一讲
查看>>
String类
查看>>
NGINX引入线程池 性能提升9倍
查看>>
Frank-Cucumber - Step Definition compendium (转载)
查看>>
select 操作
查看>>
2019.03.30 图解HTTP
查看>>
Android通过包名启动应用程序
查看>>